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Abstract. This paper discusses analytical and numerical issues related to elliptic equa-

tions with random coefficients which are generally nonlinear functions of white noise. Sin-

gularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions

between the coefficients and the solution. The solution is constructed by means of the

Wiener Chaos (Cameron-Martin) expansions. The existence and uniqueness of the solu-

tions are established under rather weak assumptions, the main of which requires only that

the expectation of the highest order (differential) operator is a non-degenerate elliptic op-

erator. The deterministic coefficients of the Wiener Chaos expansion of the solution solve a

lower-triangular system of linear elliptic equations (the propagator). This structure of the

propagator insures linear complexity of the related numerical algorithms. Using the lower

triangular structure and linearity of the propagator, the rate of convergence is derived for

a spectral/hp finite element approximation. The results of related numerical experiments

are presented.

1. Introduction

The objective of this paper is to study, both analytically and numerically, linear elliptic

equations with random coefficients. The perturbations introduced by the random coeffi-

cients can represent actual physical input or uncertainty about the model. In this paper,

we limit our considerations to coefficients that are (possibly nonlinear) functions of Gauss-

ian random fields. A popular example of an equation with random coefficients is Darcy

equation for pressure with lognormal permeability field (see [8] and the references therein).

It can be specified as the following Dirichlet problem:

−∇ (a (x, ω)∇u(x)) = f(x), x ∈ O ⊂ Rd, u|∂O = g (x) , (1.1)
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where

a (x, ω) = ā(x) exp
{

ε(x)− 1
2
E |ε(x)|2

}
, (1.2)

ω symbolizes “chance”, ε(x) =
∑

k≥1 σk(x)ξk is the noise term, σk(x) are deterministic

functions, and ξ := {ξk (ω)}k≥1 is a set of uncorrelated Gaussian random variables with zero

mean and unit variance. The force f and the boundary value g as well as the boundary itself

are assumed to be non-random. Clearly, ε(x) is a Gaussian random field with zero mean and

covariance Q (x, y) =
∑

k σk(x)σk(y) and ā(x) is the mean of a (x, ω): ā(x) = E [a(x, ω)] .

Another typical example is (1.1) with

a (x, ω) := ā(x) + ε(x, ω) (1.3)

Models (1.1)–(1.3) have been actively investigated recently in the context of uncertainty

quantification problems (see e.g [2]). Note that equation (1.1) with the function a (x, ω)

from (1.3) is ill-posed because a (x, ω) can take negative values.

Linear equation with multiplicative noise are usually referred to as bi-linear. These equa-

tions are much more challenging than linear equations with additive random perturbations.

In fact, equation (1.1) is often too singular to be “physical”. By this reason, certain

regularization is in order for each of these two models.

One effective and popular regularization procedure for these models is to replace equation

by its Wick product version

−∇ (a (x, ω) ¦ ∇u(x)) = f(x), x ∈ O ⊂ Rd, u|∂O = g (x) ; (1.4)

see [8] for a discussion of the Wick product as a modeling tool. Admittedly, “Wick product”

is anything but product, it is rather a stochastic convolution. In fact, Wick product is a

version of Malliavin divergence operator. For example, a (x, ω) ¦∇u(x) is the action of the

Malliavin divergence operator with respect to a (x, ω) on the random field ∇u(x).

The idea of this regularization procedure was championed by K. Itô in his seminal work [9].

Specifically, Itô has replaced the “product” model

u̇(t) = a (u(t)) + b (u (t)) · Ẇ (t)

by a “stochastic convolution” model

u̇(t) = a (u(t)) + b (u (t)) ¦ Ẇ (t) ,
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which turned out to be equivalent to the stochastic Itô differential:

b (u (t)) ¦ Ẇdt = b (u (t)) dW (t) .

In this paper we extend Itô’s approach to elliptic stochastic PDEs. Since absence of the

time variable prevents elliptic SPDEs from being “causal”, the underlying Itô integrals are

replaced by the Skorohod integrals (see [15]). The subsequent analysis of the equation is

based on the Wiener chaos expansion (WCE) with respect to the Cameron-Martin basis.

The Cameron-Martin basis consists of random variables

ξα =
∏

k

Hαk
(ξ)√

αk!
,

where α = (α1, α2, . . .) is a multi-index with non-negative integer entries and Hαk
(x) is

the Hermite polynomial of order αk (see Section 2 for more detail). The WCE solution

of the equation is given by the series u (x) =
∑

α∈J uα (x) ξα, where uα = E [uξα] . One

can view the Cameron-Martin expansion as a Fourier expansion that separates random

and deterministic components of the equation. We demonstrate that the deterministic

components uα (x) are uniquely defined by a lower triangular system of linear deterministic

elliptic equations (see (3.5) below). We refer to this system as the (uncertainty) propagator.

Since the basis elements ξα are given by explicit formulas, the propagator is the key element

of the solution.

From the numerical stand point, it is important that the lower triangular (in fact, bi-

diagonal) structure of the propagator ensures linear computational complexity. While it

is possible to define an approximate WCE solution for the standard multiplicative model

(1.1), the corresponding propagator turns out a full system.

From the statistical point of view, it is important that a solution of the Wick product model

(1.4) is an unbiased random perturbation of a solution of the deterministic equation (1.5)

−∇ (E [a (x, ω)]∇v(x)) = f(x), x ∈ O ⊂ Rd, u|∂O = g (x) (1.5)

in that the mean (expectation) of the solution of equation (1.4) is a solution of equation

(1.5).

In this paper we investigate elliptic equations of arbitrary deterministic and stochastic order.

As usual, by deterministic order we understand the order of the highest differential operator;

in particular, equation (1.1) has deterministic order two. The “stochastic order” of the

equation is, by definition, the highest order of the Hermite polynomial in the Wiener chaos
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expansion of the random coefficients. For equation (1.1) with the coefficient a(x, ω) defined

by (1.3) the stochastic order is 1; for the same equation with the log-normal coefficient (1.2)

this order is infinite. Note that any a (x, ω) which is nonlinear function of ξ := {ξk (ω)}k≥1

has stochastic order higher than 1.

The stochastic order is an important and also intricate characteristic of the equations in

question. For example, analytically, problem (1.1) with Gaussian a (x, ω) (stochastic order

1) is much more difficult than the lognormal a (x, ω) (stochastic order ∞). One reason for

this is that in the Gaussian case problem (1.1) is ill posed (from the classical point of view).

However, as we will see later, this ill posedness is irrelevant in our setting. In particular, it

is shown in Section 3 that bilinear stochastic elliptic PDEs are uniquely solvable under a

few simple conditions. The key is the following:

Assumption A. The expectation of the highest order (differential) operator is a nondegen-

rate elliptic operator.

For example, in the setting (1.1) this means E [a(x, ω)] ≥ c > 0 .

In Section 4 it is shown that under assumptions that are very close to those that guaran-

tee the existence and uniqueness of the solution one can construct effective finite-element

approximation algorithms. More specifically, using the lower triangular structure and the

linearity of the uncertainty propagator and incorporating the estimates of the operator

norms, we provide an a priori error estimate for the convergence of spectral/hp finite ele-

ment method. For equations of stochastic order one, this analysis has been carried out in

[22]. The same strategy can be replicated to obtain new a priori error estimates for other

numerical methods for solving the propagator.

As mentioned above the WCE solution is given by the series

u (x) =
∑

α∈J
uα (x)Hα(ξ)/

√
α!.

However, very simple examples (see Section 3) demonstrate that the variance of WCE

solutions is typically infinite or, more precisely, that E ‖u‖2 =
∑

α∈J ‖uα‖2 = ∞. Fortu-

nately, the blow-up of the Wick product model is controllable, in that the WCE solution

can be effectively rescaled by simple weights rα such that
∑

α r2
αu2

α < ∞ (see Theorem

3.3). We remark that, in the “standard product” setting, the blow-up of the WCE solution

is typically much more severe than in the Wick product setting (see Section 5)
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There are alternative ways to address bi-linear elliptic SPDEs. The most developed al-

ternative approach is based on Hida’s white noise analysis [7]. The white noise approach

exploits the built-in set of stochastic spaces, such as Hida or Kondratiev spaces [11, 12],

or even larger exponential spaces [16]. The traditional approach [17, 20, 21, etc.] has to

select a stochastic space and then to study the largest possible class of equations admitting

a solution in that space. The difference of our approach is that we select the stochastic

space that is in some sense optimal for the particular equation under consideration.

The paper consists of four sections. Section 2 describes the classes of solution spaces for

the equations of interest. The theorem about existence and uniqueness of the solution is in

Section 3. Numerical analysis of the equation using finite-element approximation, including

the proof of convergence, is in Section 4. Finally, Section 5 presents results of numerical

experiments.

2. Weighted chaos spaces

Let J be the set of multi-indices α = (α1, α2, . . .) such that αk ∈ {0, 1, 2, . . .}. For α, β ∈ J ,

we define

|a| =
∑

k≥1

αk, α! =
∏

k≥1

αk!, α + β = (α1 + β1, α2 + β2, . . .).

By definition, α > 0 if |α| > 0 and β ≤ α if

βk ≤ αk for all k ≥ 1.

If β ≤ α, then we define

α− β = (α1 − β1, α2 − β2, . . .).

We use the following notations for the special multi-indices:

(1) (0) is the multi-index with all zero entries: (0)k = 0 for all k;

(2) ε(i) is the multi-index of length 1 and with the single non-zero entry at position i:

ε(i)k =





1, if k = i;

0, if k 6= i.

We also use convention ε(0) = (0).

Given a sequence q = (qk, k ≥ 1) of positive numbers and α ∈ J , we define

qα =
∏

k≥1

qαk
k . (2.1)
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Next, we introduce the following objects:

(1) F = (Ω,F ,P), a complete probability space that is big enough to support countably

many independent Gaussian random variables;

(2) ξ = {ξk, k ≥ 1}, i.i.d. standard normal random variables on F;

(3) V , a real separable Hilbert space;

(4) Hn = Hn(t), n = 0, 1, 2, . . . , t ∈ R, one-dimensional Hermite polynomial of order n:

Hn(t) = (−1)net2/2 dn

dtn
e−t2/2. (2.2)

In particular, H0(t) = 1, H1(t) = t, H2(t) = t2 − 1, H3(t) = t3 − 3t, . . .

(5) Stochastic Hermite polynomials

Hα(ξ) =
∏

k≥1

Hαk
(ξk), α ∈ J .

For example, if α = (0, 2, 0, 1, 3, 0, 0, . . .), then

Hα(ξ) = (ξ2
2 − 1) ξ4 (ξ3

5 − 3ξ5).

Recall the following result (Cameron and Martin [3]).

Theorem 2.1. The collection {
Hα(ξ)√

α!
, α ∈ J

}

is an orthonormal basis in the space of square-integrable random variables that are measur-

able with respect to the σ-algebra generated by the collection ξ.

In what follows, assume that the σ-algebra F in F is generated by ξ, and denote by L2(F; V )

the collection of square-integrable V -valued random elements. By Theorem 2.1, every v ∈
L2(F;V ) has a unique representation

v =
∑

α∈J
vαHα(ξ), (2.3)

where

vα =
E [vHα(ξ)]

α!
, (2.4)

and

E‖v‖2
V =

∑

α∈J
α! ‖vα‖2

V . (2.5)
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Then, given a collection R = {rα, α ∈ J } of positive real numbers, we define the space

RL2(F; V ) as the closure of L2(F;V ) in the norm

‖v‖2
RL2(F;V ) =

∑

α∈J
rαα! ‖vα‖2

V . (2.6)

The space RL2(F; V ) is called a weighted chaos space. We use the notation

RL2(F) = RL2(F;R).

Proposition 2.2. Let {vα, α ∈ J } be a collection of elements from V . Then there exists

a collection R such that
∑

α∈J vαHα(ξ) ∈ RL2(F; V ).

Proof. We use the following result: if p > 1, then

∑

α∈J

1
(2N)pα

< ∞ (2.7)

where N is the sequence of positive integers and

(2N)pα =
∏

k≥1

(2k)pαk

(see [8, Proposition 7.1]). Then it is enough to take

rα =
1

α! (2N)2α(1 + ‖vα‖2
V )

.

¤

Definition 2.3. A generalized random element is a collection {vα, α ∈ J } of elements

from V .

3. Stochastic Elliptic Equations: Existence and Uniqueness of Solutions

Let I be a subset of J such that (0) ∈ I and let V ′ be a real separable Hilbert space.

Consider a collection {Aα, α ∈ I} of bounded linear operators from V to V ′, such that the

operator A(0) has a bounded inverse. The objective of this section is to study the existence

and uniqueness of solution of the following stochastic equation

∑

β∈I
(Aβu) ¦Hβ(ξ) = f (3.1)

where f ∈ V ′ is non-random and ¦ denotes the Wick product [8]. In particular,

Hα(ξ) ¦Hβ(ξ) = Hα+β(ξ). (3.2)
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Definition 3.1. Equation (3.1) is said to have finite stochastic order N if

max
α∈I

|α| = N.

The equation (3.1) is said to have infinite stochastic order if

sup
α∈I

|α| = ∞.

A special case of (3.1) is

Au +
∑

k≥1

Mku ¦ ξk = f ; (3.3)

this equations is studied in [14]. In (3.3), Aα = 0 for |α| > 1, and the equation has

stochastic order 1:

A(0)u +
∑

k≥1

(
Aε(k)u

) ¦Hε(k)(ξ) = f. (3.4)

In general, (3.1) can be written as

A(0)u = f −
∑

β∈I, |β|>0

(
Aβu

) ¦Hβ(ξ)

and interpreted as a bi-linear stochastic perturbation of the deterministic equation A(0)u =

f ; this is the reason for assuming that (0) ∈ I. The use of the Wick product ensures that

the perturbation has zero average.

In view of Proposition 2.2 and property (3.2) of the Hermite polynomials, the following

definition is natural.

Definition 3.2. A solution of equation (3.1) is a generalized random element such that

A(0)u(0) = f, |α| = 0,

A(0)uα = −
∑

β∈I
0<β≤α

Aβuα−β, |α| > 0. (3.5)

Indeed, writing u =
∑

α∈J uαHα(ξ), substituting formally into (3.1), and using (3.2), we

find
∑

α∈J

∑

β∈I
AβuαHα+β(ξ) = f,

or

∑

α∈J




∑

β∈I
β≤α

Aβuα−β


Hα(ξ) = f.

Equating the coefficients of every Hα(ξ), we conclude that (3.5) must hold.
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The following theorem establishes the existence and uniqueness of solution of equation (3.1).

Theorem 3.3. Assume that

(1) The operator A(0) has a bounded inverse A−1
(0) from V ′ to V .

(2) Each of the operators A−1
(0)Aβ, β ∈ I, |β| > 0, is bounded on V , with the operator

norm Cβ.

(3) There exists a sequence b = (b1, b2, . . .) of positive numbers, such that, for all β ∈ I,

Cβ ≤ bβ. (3.6)

(4) The function f is deterministic and belongs to V ′.

Then

(1) equation (3.1) has a unique solution u;

(2) the solution is an element of the weighted chaos space RL2(F; V ) with

rα =
cα

α!

for some sequence c = (c1, c2, . . .) of positive numbers.

Proof. To begin, let us first understand the structure of the system of equations (3.5).

Define

Bβ = −A−1
(0)Aβ, β ∈ I.

Then (3.5) becomes

u(0) = A−1
(0)f, |α| = 0,

uα =
∑

β∈I
0<β≤α

Bβuα−β, |α| > 0. (3.7)

Thus, uα with |α| = n > 0 is determined by uα with |α| < n, which implies existence and

uniqueness of solution of (3.5), and hence of (3.1).

In view of (2.7), to prove that the solution is an element of a weighted chaos space with

weights rα of the form rα = cα/α! for some sequence c = (c1, c2, . . .) of positive numbers,

it is enough to show that there exists a sequence of positive numbers q = (qk, k ≥ 1) such

that

‖uα‖V ≤ qα‖u(0)‖V ; (3.8)

then we can take ck = (2kqk)−2 Thus, to complete the proof, it remain to establish (3.8).
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We start with the particular case (3.3). Even though this equation has been studied in [14],

the analysis there relies on a closed-form expression for uα and does not easily extend to

higher orders. Denote by Bk the operator A−1Mk. Then, for |α| > 0, (3.7) becomes

uα =
∑

k≥1

1αk>0Bkuα−ε(k). (3.9)

We now show by induction that (3.8) holds with

qk = 4k2bk.

Since uε(k) = Bku(0), we have (3.8) for |α| = 1. Now assume that (3.8) holds for all α with

|α| ≤ n− 1. Then (3.9) and the triangle inequality imply, for α with |α| = n,

‖uα‖V ≤ ‖u(0)‖V

∑

k≥1

1αk>0 bkq
α−ε(k)

= qα‖u(0)‖V

∑

k≥1

1αk>0

4k2
≤ qα‖u(0)‖V

∞∑

k=1

1
4k2

< qα‖u(0)‖V ,

because
∑

k≥1 k−2 = (π2/6) < 4. This completes the proof of (3.8) for equation (3.3).

Let us now consider the general equation (3.1). We will use assumption (3.6) to show that

(3.8) holds for N > 1 with

qk = C0k
2bk,

where

C0 = 2
∑

α∈J

1
(2N)2α

; (3.10)

see (2.7). For the curious reader, we note that numerical computations show that C0 ≈ 3.2,

and simple analytic considerations put the value of C0 in the range [3.0, 3.4].

As in the case of equation (3.3), the proof of (3.8) is by induction on |α|. Let k0 = min{|β| :
β ∈ I}. If |α| ≤ k0, then uα = 0 and so (3.8) trivially holds. If α ∈ I and |α| = k0, then

(3.5) implies

uα = Bαu(0), ‖uα‖ ≤ bα‖u(0)‖V ≤ qα‖u(0)‖V .

Now assume that (3.8) holds for all uα with |α| ≤ n− 1 and fix |α| = n > k0. By (3.7), the

triangle inequality, and the induction assumption,

‖uα‖V ≤
∑

β∈I
0<β≤α

‖Bβuα−β‖V ≤ ‖u(0)‖V
qα

C0

∑

β∈I

1
(2N)2β

≤ ‖u(0)‖V
qα

C0

∑

β∈J

1
(2N)2β

≤ qα‖u(0)‖V ,
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where the last inequality follows from (3.10). This completes the proof of Theorem 3.3. ¤

Below, we illustrate Theorem 3.3 on several examples. To emphasize the main points, we

consider a simplified version of equation (3.1), in which

(1) V = V ′ = R, so that every operator Aβ is multiplication by a real number; then,

with no loss of generality, we take A(0) = 1.

(2) f = 1.

(3) the operators Aβ are such that Aβ 6= 0 only if β = (n, 0, 0, . . .) for some n =

0, 1, 2, . . . ..

In other words, (3.1) becomes

u = 1 +
∑

k≥1

aku ¦Hk(ξ), (3.11)

where ξ is a standard Gaussian random variable. The solution u has the form

u =
∑

n≥0

unHn(ξ)

for some real numbers un, and

E|u|2 =
∑

n≥1

n! u2
n. (3.12)

As a first example, consider the equation

u = 1 + u ¦ ξ. (3.13)

It is easy to verify that u = 1 +
∑

k≥1 Hk(ξ) is a solution, that is, uk = 1 for all k. By

(3.12), u /∈ L2(F;R).

The coefficients of the solution of (3.13) are bounded. With a simple modification of (3.13),

we can get coefficients that grow exponentially fast. Indeed, consider

u = 1 + u ¦ ξ + u ¦ (ξ2 − 1); (3.14)

recall that ξ2 − 1 = H2(ξ). Then (3.5) implies

u0 = 1, u1 = 1, un = un−1 + un−2, n ≥ 2.

Thus, un is nth Fibonacci number, and, as n → ∞, un behaves asymptotically as (1 +
√

5)n/2n. In other words, we have un ≥ rn for some r > 1. Again, (3.12) implies Eu2 = ∞
and so u /∈ L2(F;R).
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Examples (3.13) and (3.14) show that, if equation (3.1) has finite stochastic order, then, in

general, the solution does not belong to L2(F;V ). In fact, we are not aware of any elliptic

equation with multiplicative finite-order noise and with a square-integrable solution.

Let us consider now the equation

u = 1−
∑

n≥1

u ¦Hn(ξ)
n!

. (3.15)

This equation has infinite stochastic order. Direct computations show that

u = 1 +
∑

n≥1

(−1)n

n!
Hn(ξ) = e−ξ−(1/2);

one can also derive this by re-writing (3.15) as

eξ−(1/2) ¦ u = 1

and noticing that eξ−(1/2) ¦ e−ξ−(1/2) = 1. In particular, Eu2 = e < ∞, so u ∈ L2(F;R).

4. Numerical Analysis of a Stochastic Dirichlet Problem

Let O ∈ Rd be a bounded, open, connected set with a Lipschitz continuous boundary ∂O.

Denote by 〈·, ·〉 the inner product in L2(O). Consider the following problem:




Au +
∑

β∈I
|β|≥1

Aβu ¦Hβ(ξ) = f, x ∈ O,

u = 0, x ∈ ∂O,

(4.1)

where ξ is a finite- or infinite-dimensional standard Gaussian random variable. For simplic-

ity, we assume that the force term f(x) is a deterministic function. The operators A = A(0)

and Aβ are defined by

Au(x) = −
d∑

i,j=1

Di

(
aij(x)Dju(x)

)
, (4.2)

Aβ(x) = wβ(x)
d∑

i,j=1

Di

(
σij,β(x)Dju(x)

)
, (4.3)

where the functions aij(x), σij,β(x), and wβ(x) satisfy the following assumptions:

Assumption 4.1.

(a) The functions aij(x) are measurable and bounded in the closure Ō of O;
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(b) There exist positive numbers A1, A2 such that A1|y|2 ≤ aij(x)yiyj ≤ A2|y|2 for all

x ∈ Ō and y ∈ Rd;

(c) The functions σij,β(x) are bounded and measurable:

|σij,β(x)| ≤ Cσ
β for all x ∈ Ō, i, j = 1, . . . , d; (4.4)

(d) The functions wβ(x) are bounded and Lipschitz continuous:

|wβ(x)| ≤ Cw
β and |wβ(x)− wβ(y)| ≤ CL

β |x− y|, x, y ∈ Ō. (4.5)

(e) There exists a sequence b = (b1, b2, . . .) of positive numbers such that, for all β ∈ I,
(
CL

β + Cw
β

)
Cσ

β ≤ bβ.

Taking as V and V ′ the Sobolev spaces H1
0 (O) and H−1(O), respectively, we note that

Theorem 3.3 applies to equation (4.1) because the operators A−1Aβ are bounded on V .

Indeed, note that

‖u‖2
V = ‖u‖2

L2(O) + ‖∇u‖2
L2(O)

and let Cπ be the Poincare constant for the domain O:

‖u‖2
L2(O) ≤ Cπ‖∇u‖2

L2(O). (4.6)

Assumption 4.1(b) implies

〈Au, u〉 ≥ A1

1 + Cπ
‖u‖2

V , u ∈ V ;

here 〈·, ·〉 denotes the duality paring between V ′ and V relative to the inner product in

L2(O), Then, by direct computation,

‖A−1Aβu‖V ≤
(

1 + Cπ

A1

)(
CL

β + Cw
β

)
Cσ

β.

Example 4.2. Let G(x) is a Gaussian field on O with representation

G(x) =
∞∑

k=1

hk(x)ξk, (4.7)

where {hk, k ≥ 1} are smooth bounded functions such that
∑

k≥1

(
sup
x∈O

|hk(x)|2 + sup
x∈O

|∇hk(x)|2
)

< ∞ (4.8)

and ξ = {ξk, k ≥ 1} is a collection of independent standard Gaussian random variables.

Note that

Ḡ(x) := EeG(x) = exp


1

2

∑

k≥1

h2
k(x)


 .
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Examples of (4.7) are Karhuan-Loève expansion [13], spectral expansion [19], and Fourier-

Wavelet expansion [6].

Consider the equation

∇ · (eG(x) ¦ ∇u) = f. (4.9)

If

hα(x) =
Ḡ(x)
α!

∏

k

hαk
k (x), α ∈ J ,

then

eG(x) = Ḡ(x)
(
1 +

∑

|β|≥1

hβ(x)Hβ(ξ)
)
.

and (4.9) becomes a particular case of (4.1):

∇ ·
(
Ḡ(x)∇u

)
+

∑

|β|≥1

∇ · (Ḡ(x)hβ(x)∇u
) ¦Hβ(ξ) = f ;

to satisfy Assumption 4.1(e), take bk = supx∈O |hk(x)|+ supx∈O |∇hk(x)|.

Replacing in (4.9) the usual exponential eG(x) with the Wick exponential

e¦G((x)) = eG(x)− 1
2

P
k≥1 h2

k(x) (4.10)

also leads to an equation of the form (4.1).

The objective of this section is to study numerical solution of (4.1). Specifically, we construct

an approximation of (4.1) using finite elements in the physical space O and a truncated

chaos expansion in the probability space. For the sake of concreteness we assume that the

physical space is two-dimensional: d = 2.

Let Th be a family of triangulations of O with straight edges and h the maximum size of

the elements in Th. We assume that the family is regular, in other words, the minimal

angle of all the triangles is bounded from below by a positive constant. We define the finite

element space as

V K
h,p =

{
v

∣∣∣ v ◦ F−1
K ∈ Pp(R)

}
, Vh,p =

{
v ∈ H1(D)

∣∣∣ v|K ∈ V K
h,p, K ∈ Th

}
,

where FK is the mapping function for the element K which maps the reference element

R (for example, an equilateral triangle or an isosceles right triangle) to the element K

and Pp(R) denotes the set of polynomials of degree at most p on R. We assume that

vh|∂O = 0, vh ∈ Vh,p. Thus, Vh,p is an approximation of H1
0 (O) by piece-wise polynomial
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functions. There exist many choices of basis functions on the reference elements, such as

h-type finite elements [5], spectral/hp elements [10, 18], etc.

To describe truncated chaos expansion, fix positive integers M, n and define the finite di-

mensional set JM,n ⊂ J as

JM,n :=
{

α
∣∣∣ |α| ≤ M, αk = 0, k > n

}
. (4.11)

The truncated Wiener chaos space V M,n is then

V M,n :=
{ ∑

α∈JM,n

fαHα(ξ)
∣∣∣ fα ∈ R

}
, (4.12)

Similarly, let

IM,n = I ∩ JM,n.

It follows from (3.5) that uα is fully determined by coefficients uβ and operators Aβ with

β ≤ α. Thus we only need to keep the operators Aβ with β ∈ IM,n if we only consider the

coefficients uα with α ∈ JM,n.

The sFEM (stochastic finite element method) can be formulated as follows: Find uM,n
h,p ∈

Vh,p ⊗ V M,n such that, for all v ∈ Vh,p ⊗ V M,n,

E〈A(0)u
M,n
h,p , v〉+ E

∑

β∈IM,n

|β|>0

〈AβuM,n
h,p ¦Hβ(ξ), v〉 = E〈f, v〉. (4.13)

Remark 4.3. The underlying idea of sFEM is to consider a finite element approximation,

followed by a truncation of the chaos expansion. Alternatively, it is possible to truncate the

chaos expansion first and then apply the finite element method to the truncated version of

the uncertainty propagator (3.5):

A(0)u(0) = f, |α| = 0,

A(0)uα +
∑

β∈IM,n

0<β≤α

Aβuα−β = 0, |α| > 0. (4.14)

This approach will not be discussed in this paper.

The following is the main result about the convergence of the stochastic finite element

method.
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Theorem 4.4. Assume that conditions given in Assumption 4.1 and Theorem 3.3 are

satisfied and in addition, u ∈ RL2(F;Hm+1(O)) for some integer m ≥ 1. Then

‖u− uM,n
h,p ‖RL2(F;H1

0 (O)) ≤ C1h
µ−1p−m‖u‖RL2(F;Hm+1(O))

+ C2‖f‖H−1(O)

(
1

2M
+

1√
n

)
,

(4.15)

where µ = min(m + 1, p + 1), the constants C1 and C2 are independent of h and p, and C2

is also independent of M, n.

Proof. Define V = H1
0 (O) and let the Wiener-chaos expansion of u and uM,n

h,p be

u =
∑

α∈J
uαHα(ξ), uM,n

h,p =
∑

α∈JM,n

ûαHα(ξ),

respectively. Then

u− uM,n
h,p =

∑

α∈JM,n

(uα − ûα)Hα +
∑

α∈J\JM,n

uαHα, (4.16)

and

‖u− uM,n
h,p ‖2

RL2(F;V ) =
∑

α∈JM,n

‖uα − ûα‖2
V ‖Hα‖2

RL2(F)

+
∑

α∈J\JM,n

‖uα‖2
V ‖Hα‖2

RL2(F) = I1 + I2.
(4.17)

The structure of equation (3.5) ensures that the coefficients uα with α ∈ J \JM,n and

operators Aβ with β ∈ I\IM,n do not affect ûα with α ∈ JM,n. In other words, I1 is

the error from the finite element discretization and I2 is from the truncation of the chaos

expansion.

We first look at the term I1 by considering equation (4.14). Since the equation for u(0)

is a usual deterministic elliptic equation, we here only consider the equations for uα with

|α| > 0. By (4.13),

A(0)ûα +
∑

β∈IM,n

0<β≤α

Aβûα−β = 0. (4.18)

Furthermore, although we truncate the number of random variables and the multi-index

set I, the structure of the uncertainty propagator (3.5) ensures that the exact solution also

satisfied

A(0)uα +
∑

β∈IM,n

0<β≤α

Aβuα−β = 0. (4.19)
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Denote by a(·, ·) the bilinear form generated by the elliptic operator A(0):

a(u, v) = 〈Au, v〉.

Then, for every vh ∈ Vh,p,

a(ûα − vh, ûα − vh)

= a(uα − vh, ûα − vh) + a(ûα − uα, ûα − vh)

= a(uα − vh, ûα − vh)−
∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), ûα − vh〉 . (4.20)

Assumption 4.1(b) implies

A1

1 + Cπ
‖u‖2

V ≤ a(u, u), a(u, v) ≤ A2‖u‖V ‖v‖V , u ∈ V,

where Cπ is the Poincare constant for the domain O; see (4.6). Then, with C1 = A1/(1+Cπ)

and thinking wh = ûα − vh,

C1‖ûα − vh‖V ≤ A2‖uα − vh‖V + sup
wh∈Vh,p

wh 6=0

∣∣∣∣∣∣∣∣

∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), wh〉

∣∣∣∣∣∣∣∣
‖wh‖V

.

Combining the above inequality with the triangle inequality

‖uα − ûα‖V ≤ ‖uα − vh‖V + ‖ûα − vh‖V ,

we find

‖uα − ûα‖V ≤
(

1 +
A2

C1

)
inf

vh∈Vh,p

‖uα − vh‖V

+
1
C1

sup
wh∈Vh,p

wh 6=0

∣∣∣∣∣∣∣∣

∑

β∈IM,n

0<β≤α

〈Aβ(uα−β − ûα−β), wh〉

∣∣∣∣∣∣∣∣
‖wh‖V

. (4.21)

By Assumptions 4.1(c,d),

〈Aβu, v〉 ≤ Cβ‖u‖V ‖v‖V (4.22)
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where Cβ = Cσ
β

(
CL

β + Cw
β

)
. Therefore,

‖uα − ûα‖V ≤ C inf
vh∈Vh,p

‖uα − vh‖V +
∑

β∈IM,n

0<β≤α

Ĉβ‖uα−β − ûα−β‖V (4.23)

for some constants C and Ĉβ. The first term on the right-hand side is the approximation

error of finite element approximation and the second term is the error propagated from the

approximation of lower-order coefficients. Using equation (4.23) recursively, we obtain

‖uα − ûα‖V ≤
∑

β≤α

Ĉα,β inf
vh∈Vh,p

‖uβ − vh‖V , (4.24)

with some constants Ĉα,β. According to the theory of the finite element approximation

[1, 5], there exists a positive number Cf such that, for every function u ∈ H1
0 (O)∩Hm+1(O),

inf
vh∈Vh

‖uα − vh‖V ≤ Cfhµ−1p−m‖uα‖Hm+1(D), (4.25)

where µ = min(m + 1, p + 1). Then

‖uα − ûα‖2
V ≤ C2

fh2µ−2p−2m


∑

β≤α

Ĉα,β‖uα‖Hm+1(O)




2

≤ C2
fh2µ−2p−2m

∑

β≤α

Ĉ2
α,β

∑

β≤α

‖uβ‖2
Hm+1(O)

= h2µ−2p−2mĈα

∑

β≤α

‖uβ‖2
Hm+1(O),

and the term I1 can be bounded as

I1 ≤ h2µ−2p−2m
∑

α∈JM,n

Ĉα

∑

β≤α

‖uβ‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2µ−2p−2mC(M,n)
∑

α∈JM,n

Ĉα‖uα‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2µ−2p−2mC(M,n) max
α∈JM,n

Ĉα

∑

α∈JM,n

‖uα‖2
Hm+1(D)‖Hα‖2

RL2(F)

≤ h2µ−2p−2mC1(M,n)‖u‖2
RL2(F;Hm+1(D)). (4.26)

To estimate the truncation error I2 of the Wiener chaos expansion, note that ‖Hα‖2
RL2(F) =

rα α!, and, by (3.8),

rα =

(
2N)−2αq−α

α!
.

Also,

‖uα‖V ≤ qα‖u(0)‖V ≤ CAqα‖f‖H−1(D).
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As a result,

I2 =
∑

α∈J\JM,n

‖uα‖2
V ‖Hα‖2

RL2(F) ≤ CA‖f‖H−1(D)

∑

α∈J\JM,n

(2N)−2α ≤ C2

(
1

22M
+

1
n

)
,

where the last inequality is taken from [4, proof of Theorem 2]. This, together with (4.17)

and (4.26), completes the proof of Theorem 4.4. ¤

5. Computations

In this section we present some results of numerical experiments and compare our model

with another one studied in the literature on uncertainty quantification. We consider the

following one-dimensional problem



− d

dx(K ∗ d
dxu) = 1,

u(0) = 0, u(1) = 0,
(5.1)

where

• ∗ denotes either the Wick product ¦ or the ordinary product · ;

• K = ecξ− 1
2
c2 , ξ is a standard Gaussian random variable, c > 0 is a real number.

The random variable K can be regarded as a simplified version of the random field e¦G(x)

from (4.10). Note that

E [K] = 1, Var [K] = ec2 − 1. (5.2)

Denote by Hi the normalized Hermite polynomials:

Hi(ξ) =
Hi(ξ)√

i!
.

Substituting the truncated Wiener chaos expansion

u(x) =
n∑

i=0

ui(x)Hi(ξ)

into equation (5.1) and implementing the finite element projection we obtain the uncertainty

propagators

−
n∑

i=0

d2

dx2
ui(x)E

[
KHiHj

]
= δ0,j , j = 0, 1, . . . , n (5.3a)

−
n∑

i=0

d2

dx2
ui(x)E

[
(K ¦Hi)Hj

]
= δ0,j , j = 0, 1, . . . , n (5.3b)

for the ordinary product and the Wick product, respectively.



20 S. V. LOTOTSKY, B. L. ROZOVSKII, AND X. WAN

Using the Taylor expansion and the properties of Hermite polynomials, we obtain

E
[
KHiHj

]
= e−c2/2

∞∑

n=0

[n/2]∑

k=0

∑

p≤i∧j

A(n, k)B(i, j, p)δn−2k,i+j−2p, (5.4a)

E
[
(K ¦Hi)Hj

]
=

e−c2/2

√
i!

∞∑

n=0

[n/2]∑

k=0

cn

√
(n− 2k + i)!

(n− 2k)!(2k)!!
δn−2k+i,j , (5.4b)

where

A(n, k) =
cn

n!

(
n

2k

)
(2k − 1)!!

√
(n− 2k)!, B(i, j, p) =

[(
i

p

)(
j

p

)(
i + j − 2p

i− p

)]1/2

.

Formulas similar to (5.4a) and (5.4b) can also be derived when

K(x) = e¦G(x), (5.5)

with G(x) given by (4.7). For simplicity, we present numerical results for the space-

independent case G(x) = cξ, corresponding to K = ecξ−(c2/2). The qualitative behavior

of the solutions of (5.1), with either ordinary or Wick product, remains the same for the

more general noise (5.5), as long as conditions (4.8) hold.

Let us compare the matrix structures of E
[
KHiHj

]
and E

[
(K ¦Hi)Hj

]
.

• Ordinary product. For all c1, . . . , cn ∈ R, we have

n∑

i,j=1

cicjE
[
KHiHj

]
= E




n∑

i,j=1

cicjKHiHj




= E




(
n∑

i=1

K1/2Hici

)2

 ≥ 0.

It can be shown that when K is lognormal, ci must be zero if the equality is satisfied.

In other words, the matrix E
[
KHiHj

]
is symmetric and positive definite. Thus all

the eigenvalues of the matrix
(
E

[
KHiHj

]
, i, j = 1, . . . , n

)
are positive, and the

system (5.3a) is well-posed. However, all unknowns in equation (5.3a) are coupled

together, which is not a desirable property for numerical computation.
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• Wick product. As n must be even for i = j to get nonzero terms in equation

(5.4b), it follows that E
[
(K ¦Hi)Hi

]
= 1 for all i = 0, 1, . . .. Indeed,

E
[
(K ¦Hi)Hi

]
=

e−1/2

√
i!

∞∑

m=0

m∑

k=0

√
(2m− 2k + i)!

(2m− 2k)!(2k)!!
δ2m−2k+i,i

=
e−1/2

√
i!

∞∑

m=0

√
i!

(2m)!!

= e−1/2
∞∑

m=0

1
2mm!

= e−1/2e1/2 = 1.

Furthermore, we note that E
[
(K ¦Hi)Hj

]
is a lower-triangular matrix. In other

words, the coefficient ui depends only on uj with j < i.

In the first numerical experiment, we take c = 1 and compare the chaos coefficients of

solutions corresponding to the ordinary and Wick products. Figure 1 presents the results.

For a better comparison, we use the same scale on both graphs and also plot the function

Ud, the solution of

−d2Ud(x)
dx2

= 1, 0 < x < 1; Ud(0) = Ud(1) = 0, (5.6)

Note that Ud is the solution of (5.1) when K is replaced by its mean value E [K] = 1.

We make the following observations:

(1) When the ordinary product is used, Ud 6= u0; when the Wick product is used,

Ud = u0. This is a direct consequence of equations (5.3a) and (5.3b). In Figure 2 ,

we plot the function u0 corresponding to the ordinary product, for different values

of c. It appears that u0 is an increasing function of c and is close to Ud when c ≤ 0.1.

(2) The larger the number i, the smaller the coefficient ui. However, it appears that

the coefficients for the Wick product are much smaller than the corresponding co-

efficients for the ordinary product. Below, we investigate this phenomenon further

by changing the value of c.

In the second numerical experiment, we study the relation between the variance of the

perturbation K and the variance of the corresponding solution. We change the value of c

from 0.1 to 2.5, which, by (5.2), is equivalent to changing the standard deviation of K from

0.1003 to 22.7379. Figures 3 and 4 present the results.

In Figure 3, we plot the variance of the solution as a function of x for several values of

c, and notice that, in each case, the variance seems to be largest near the middle of the
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Figure 1. Chaos expansion coefficients. Left: ordinary product; Right: Wick product.
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Figure 2. The plot of E [u(x)] for different values of c, ordinary product.

interval (0, 1). In Figure 4, we plot the solution variance at point x = 0.5 as a function of c.

It appears that variances corresponding to ordinary and Wick products are close for small

c, but diverge quickly as c increases: in the same range of the values of c, the variance of

the solution increases from O(10−5) to O(106) for the ordinary product, and from O(10−5)

to O(101) for the Wick product.

In summary, although the solutions of equation (5.1) with Wick and ordinary products be-

long to L2(F; H1
0 (0, 1)), the two different products lead to many differences in the properties

of the solution. The differences are especially pronounced when the noise K is large. A

more detailed analysis shows that many numerical characteristics of the solutions differ by
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Figure 3. Variance of the solution for different values of c.

Left: Ordinary product; Right: Wick product
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Figure 4. Variance of the solution at x = 0.5, as a function of c.

the factor of ec2 , which is related to the equality ecξ− 1
2
c2 ¦ e−cξ− 1

2
c2 = 1. At this point,

we make the statement intentionally vague, because this scaling by the factor ec2 seems

to have many important ramifications and must be studied further, both analytically and

numerically.
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Boston, 1996.
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